東大理系2016:第3問


\(a\) を \(1 \lt a \lt 3\) をみたす実数とし, 座標空間内の \(4\) 点 \(\text{P} {} _ 1 \ ( 1 , 0 , 1 )\) , \(\text{P} {} _ 2 \ ( 1 , 1 , 1 )\) , \(\text{P} {} _ 3 \ ( 1 , 0 , 3 )\) , \(\text{Q} \ ( 0 , 0 , a )\) を考える. 直線 \(\text{P} {} _ 1 \text{Q}\) , \(\text{P} {} _ 2 \text{Q}\) , \(\text{P} {} _ 3 \text{Q}\) と \(xy\) 平面の交点をそれぞれ \(\text{R} {} _ 1\) , \(\text{R} {} _ 2\) , \(\text{R} {} _ 3\) として, 三角形 \(\text{R} {} _ 1 \text{R} {} _ 2 \text{R} {} _ 3\) の面積を \(S(a)\) とする. \(S(a)\) を最小にする \(a\) と, そのときの \(S(a)\) の値を求めよ.


東大理系2016:第4問


\(z\) を複素数とする. 複素数平面上の \(3\) 点 \(\text{A} ( 1 )\) , \(\text{B} ( z )\) , \( \text{C} ( z^2 )\) が 鋭角三角形をなすような \(z\) の範囲を求め, 図示せよ.


東大理系2016:第5問


\(k\) を正の整数とし, \(10\) 進法で表された小数点以下 \(k\) 桁の実数 \[ 0 . a _ 1 a _ 2 \cdots a _ k = \dfrac{a _ 1}{10} +\dfrac{a _ 2}{10^2} +\cdots +\dfrac{a _ k}{10^k} \] を \(1\) つとる. ここで, \(a _ 1 , a _ 2 , \cdots , a _ k\) は \(0\) から \(9\) までの整数で, \(a _ k \neq 0\) とする.

  1. (1) 次の不等式をみたす正の整数 \(n\) をすべて求めよ. \[ 0 . a _ 1 a _ 2 \cdots a _ k \leqq \sqrt{n} -10^k \lt 0. a _ 1 a _ 2 \cdots a _ k +10^{-k} \]

  2. (2) \(p\) が \(5 \cdot 10^{k-1}\) 以上の整数ならば, 次の不等式をみたす正の整数 \(m\) が存在することを示せ. \[ 0 . a _ 1 a _ 2 \cdots a _ k \leqq \sqrt{m} -p \lt 0. a _ 1 a _ 2 \cdots a _ k +10^{-k} \]

  3. (3) 実数 \(x\) に対し, \(r \leqq x \lt r+1\) をみたす整数 \(r\) を \([x]\) で表す. \(\sqrt{s} -\left[ \sqrt{s} \right] = 0 . a _ 1 a _ 2 \cdots a _ k\) をみたす正の整数 \(s\) は存在しないことを示せ.


東大理系2016:第6問


座標空間内を, 長さ \(2\) の線分 AB が次の \(2\) 条件 (a) , (b) をみたしながら動く.

  1. (a) 点 A は平面 \(z=0\) 上にある.

  2. (b) 点 C \(( 0 , 0 , 1 )\) が線分 AB 上にある.

このとき, 線分 AB が通過することのできる範囲を \(K\) とする. \(K\) と不等式 \(z \geqq 1\) の表す範囲との共通部分の体積を求めよ.