以下の各問いに答えよ.
(1) 底面の半径が \(r\) , 高さが \(h\) の直円錐の側面積を \(r\) と \(h\) を用いて表せ.
(2) 座標平面上の \(4\) 点 A \(\left( \dfrac{\sqrt{3}}{3} , 1 \right)\) , B \(\left( \dfrac{\sqrt{3}}{2} , \dfrac{3}{2} \right)\) , E \(\left( 0 , \dfrac{3}{2} \right)\) , F \(( 0 , 1 )\) を考える. 四角形 ABEF を \(y\) 軸のまわりに \(1\) 回転してできる回転体の表面積を求めよ.
(3) 座標平面上の曲線 \[ C : \ x^2+y^2 = 3 \quad ( 0 \lt x \lt \sqrt{2} , \ 1 \lt y \lt \sqrt{3} ) \] の上の点 Q を考える. 点 Q と同じ \(y\) 座標を持つ \(y\) 軸上の点を H とし, 原点 O と点 Q を結ぶ線分 OQ が直線 \(y = 1\) と交わる点を P とする. さらに点 F \(( 0 , 1 )\) をとる. 四角形 PQHF を \(y\) 軸のまわりに \(1\) 回転してできる回転体の面のうち, 線分 PQ が \(1\) 回転してできる面の表面積を \(S\) とする. 点 Q が曲線 \(C\) 上を動くとき \(S\) の最大値を求めよ.
続きを読む