自然数 \(n\) に対し, \(3\) 個の数字 \(1, 2, 3\) から重複を許して \(n\) 個並べたもの \(( x _ 1 , x _ 2 , \cdots , x _ n)\) の全体の集合を \(S _ n\) とおく. \(S _ n\) の要素 \(( x _ 1 , x _ 2 , \cdots , x _ n)\) に対し, 次の \(2\) つの条件を考える.
条件 \( \text{C} {} _ {12}\) : \(1 \leqq i \lt j \leqq n\) である整数 \(i , j\) の組で, \(x _ i = 1\) , \(x _ j = 2\) を満たすものが少なくとも \(1\) つ存在する.
条件 \( \text{C} {} _ {123}\) : \(1 \leqq i \lt j \lt k \leqq n\) である整数 \(i , j , k\) の組で, \(x _ i = 1\) , \(x _ j = 2\) , \(x _ k = 3\) を満たすものが少なくとも \(1\) つ存在する.
例えば, \(S _ 4\) の要素 \(( 3, 1, 2, 2 )\) は条件 \( \text{C} {} _ {12}\) を満たすが, 条件 \( \text{C} {} _ {123}\) は満たさない.
\(S _ n\) の要素 \(( x _ 1 , x _ 2 , \cdots , x _ n)\) のうち, 条件 \( \text{C} {} _ {12}\) を満たさないものの個数を \(f(n)\) , 条件 \( \text{C} {} _ {123}\) を満たさないものの個数を \(g(n)\) とおく. このとき以下の各問いに答えよ.
(1) \(f(4)\) と \(g(4)\) を求めよ.
(2) \(f(n)\) を \(n\) を用いて表せ.
(3) \(g(n+1)\) を \(g(n)\) と \(f(n)\) を用いて表せ.
(4) \(g(n)\) を \(n\) を用いて表せ.
続きを読む