京大理系2015:第2問


次の \(2\) つの条件を同時に満たす四角形のうち面積が最小のものの面積を求めよ.

  1. (a) 少なくとも \(2\) つの内角は \(90^{\circ}\) である.

  2. (b) 半径 \(1\) の円が内接する. ただし, 円が四角形に内接するとは, 円が四角形の \(4\) つの辺すべてに接することをいう.


続きを読む

京大理系2015:第3問

  1. (1) \(a\) を実数とするとき, \(( a , 0 )\) を通り, \(y = e^x +1\) に接する直線がただ \(1\) つ存在することを示せ.

  2. (2) \(a _ 1 = 1\) として, \(n = 1, 2, \cdots\) について, \(( a _ n , 0 )\) を通り, \(y = e^x +1\) に接する直線の接点の \(x\) 座標を \(a _ {n+1}\) とする. このとき, \(\displaystyle\lim _ {n \rightarrow \infty} ( a _ {n+1} -a _ n )\) を求めよ.


続きを読む

京大理系2015:第6問


\(2\) つの関数を \[ f _ 0 (x) = \dfrac{x}{2} , \ f _ 1 (x) = \dfrac{x+1}{2} \] とおく. \(x _ 0 = \dfrac{1}{2}\) から始め, 各 \(n = 1, 2, \cdots\) について, それぞれ確率 \(\dfrac{1}{2}\) で \(x _ n = f _ 0 ( x _ {n-1} )\) または \(x _ n = f _ 1 ( x _ {n-1} )\) と定める. このとき, \(x _ n \lt \dfrac{2}{3}\) となる確率 \(P _ n\) を求めよ.


続きを読む