\(n\) を自然数とする. \(xy\) 平面上で行列 \(\left( \begin{array}{cc} 1-n & 1 \\ -n( n+1 ) & n+2 \end{array} \right)\) の表す \(1\) 次変換(移動ともいう)を \(f _ n\) とする. 次の問に答えよ.
(1) 原点 O \(( 0 , 0 )\) を通る直線で, その直線上のすべての点が \(f _ n\) により同じ直線上に移されるものが \(2\) 本あることを示し, この \(2\) 直線の方程式を求めよ.
(2) (1) で得られた \(2\) 直線と曲線 \(y = x^2\) によって囲まれる図形の面積 \(S _ n\) を求めよ.
(3) \(\textstyle\sum\limits _ {n=1}^{\infty} \dfrac{1}{S _ n -\frac{1}{6}}\) を求めよ.
続きを読む