数列 \(\{ a _ n \}\) を \[ a _ 1 = 5 , \ a _ {n+1} = \dfrac{4 a _ n -9}{a _ n -2} \quad ( n = 1, 2, 3, \cdots ) \] で定める. また数列 \(\{ b _ n \}\) を \[ b _ n = \dfrac{a _ 1 +2 a _ 2 +\cdots +n a _ n}{1 +2 +\cdots +n} \quad ( n = 1, 2, 3, \cdots ) \] と定める.
(1) 数列 \(\{ a _ n \}\) の一般項を求めよ.
(2) すべての \(n\) に対して, 不等式 \(b _ n \leqq 3 +\dfrac{4}{n+1}\) が成り立つことを示せ.
(3) 極限値 \(\displaystyle\lim _ {n \rightarrow \infty} b _ n\) を求めよ.
続きを読む