投げたとき表と裏の出る確率がそれぞれ \(\dfrac{1}{2}\) のコインを \(1\) 枚用意し, 次のように左から順に文字を書く.
コインを投げ, 表が出たときは文字列 A A を書き, 裏が出たときは文字 B を書く. さらに繰り返しコインを投げ, 同じ規則に従って, A A, B をすでにある文字列の右側につなげて書いていく.
たとえば, コインを \(5\) 回投げ, その出た目が順に表, 裏, 裏, 表, 裏であったとすると, 得られる文字列は
\[
\text{A A B B A A B}
\]
となる. このとき, 左から \(4\) 番目の文字は B, \(5\) 番目の文字は A である.
(1) \(n\) を正の整数とする. \(n\) 回コインを投げ, 文字列をつくるとき, 文字列の左から \(n\) 番目の文字が A となる確率を求めよ.
(2) \(n\) を \(2\) 以上の整数とする. \(n\) 回コインを投げ, 文字列を作るとき, 文字列の左から \(n-1\) 番目の文字が A で, かつ \(n\) 番目の文字が B となる確率を求めよ.
続きを読む