医科歯科大2016:第1問


自然数 \(n\) に対して, \(n\) のすべての正の約数( \(1\) と \(n\) を含む)の和を \(S(n)\) とおく. 例えば, \(S(9) = 1 +3 +9 = 13\) である. このとき以下の各問いに答えよ.

  1. (1) \(n\) が異なる素数 \(p\) と \(q\) によって \(n = p^2 q\) と表されるとき, \(S(n) = 2n\) を満たす \(n\) をすべて求めよ.

  2. (2) \(a\) を自然数とする. \(n = 2^a -1\) が \(S(n) = n+1\) を満たすとき, \(a\) は素数であることを示せ.

  3. (3) \(a\) を \(2\) 以上の自然数とする. \(n = 2^{a-1} \left( 2^a -1 \right)\) が \(S(n) \leqq 2n\) を満たすとき, \(n\) の \(1\) の位は \(6\) か \(8\) であることを示せ.


続きを読む

医科歯科大2016:第2問


\(xyz\) 空間において連立不等式 \[ |x| \leqq 1 , \quad |y| \leqq 1 , \quad |z| \leqq 1 \] の表す領域を \(Q\) とし, 正の実数 \(r\) に対して \(x^2 +y^2 +z^2 \leqq r^2\) の表す領域を \(S\) とする. また, \(Q\) と \(S\) のいずれか一方のみに含まれる点全体がなす領域を \(R\) とし, \(R\) の体積を \(V(r)\) とする. さらに

  • \(x \geqq 1\) の表す領域と \(S\) の共通部分を \(S _ x\)

  • \(y \geqq 1\) の表す領域と \(S\) の共通部分を \(S _ y\)

  • \(z \geqq 1\) の表す領域と \(S\) の共通部分を \(S _ z\)

とし,

  • \(S _ x \neq \emptyset\) を満たす \(r\) の最小値を \(r _ 1\)

  • \(S _ x \cap S _ y \neq \emptyset\) を満たす \(r\) の最小値を \(r _ 2\)

  • \(S _ x \cap S _ y \cap S _ z \neq \emptyset\) を満たす \(r\) の最小値を \(r _ 3\)

とする. ただし, \(\emptyset\) は空集合を表す. このとき以下の各問いに答えよ.

  1. (1) \(r = \dfrac{\sqrt{10}}{3}\) のとき, \(R\) の \(xy\) 平面による断面を図示せよ.

  2. (2) \(r _ 1 , r _ 2 , r _ 3\) および \(V( r _ 1 ) , V( r _ 3 )\) を求めよ.

  3. (3) \(r \geqq r _ 1\) のとき, \(S _ x\) の体積を \(r\) を用いて表せ.

  4. (4) \(0 \lt r \leqq r _ 2\) において, \(V(r)\) が最小となる \(r\) の値を求めよ.


続きを読む

医科歯科大2016:第3問


関数 \(f(x) = \langle \! \langle x \rangle \! \rangle -2 \langle \! \langle x-1 \rangle \! \rangle +\langle \! \langle x-2 \rangle \! \rangle\) を考える. ここで, 実数 \(u\) に対して \(\langle \! \langle u \rangle \! \rangle = \dfrac{u +|u|}{2}\) とする. このとき以下の各問いに答えよ.

  1. (1) \(f(x)\) のグラフをかけ.

  2. (2) \(g(x) = \displaystyle\int _ {0}^{1} f(x-t) \, dt\) とおくとき, \(g(x)\) の最大値を求めよ.

  3. (3) (2) の \(g(x)\) に対して, \(p(s) = \displaystyle\int _ {0}^{3} (x-s)^2 g(x) \, dx\) とおくとき, \(p(s)\) の最小値を求めよ.


続きを読む