\(a\) を正の定数とし, \(xy\) 平面上の曲線 \(C\) の方程式を \(y = x^3 -a^2x\) とする.
(1) \(C\) 上の点 A \(( t, t^3 -a^2t )\) における \(C\) の接線を \(\ell\) とする. \(\ell\) と \(C\) で囲まれた図形の面積 \(S(t)\) を求めよ. ただし, \(t\) は \(0\) でないとする.
(2) \(b\) を実数とする. \(C\) の接線のうち \(xy\) 平面上の点 B \(( 2a , b )\) を通るものの本数を求めよ.
(3) \(C\) の接線のうち点 B \(( 2a , b )\) を通るものが \(2\) 本のもの場合を考え, それらの接線を \(\ell _ 1 , \ell _ 2\) とする. ただし, \(\ell _ 1\) と \(\ell _ 2\) はどちらも原点 \((0,0)\) は通らないとする. \(\ell _ 1\) と \(C\) で囲まれた図形の面積を \(S _ 1\) とし, \(\ell _ 2\) と \(C\) で囲まれた図形の面積を \(S _ 2\) とする. \(S _ 1 \geqq S _ 2\) として, \(\dfrac{S _ 1}{S _ 2}\) の値を求めよ.
続きを読む