座標平面の点 \((x,y)\) を \(( 3x+y , -2x )\) へ移す移動 \(f\) を考え, 点 P が移る先を \(f( \text{P} )\) と表す. \(f\) を用いて直線 \(l _ 0 , l _ 1 , l _ 2 , \cdots\) を以下のように定める.
\(l _ 0\) は直線 \(3x+2y=1\) である.
点 P が \(l _ n\) 上を動くとき, \(f( \text{P} )\) が描く直線を \(l _ {n+1}\) とする( \(n =0, 1, 2, \cdots\) ).
(1) \(a _ {n+1} , b _ {n+1}\) を \(a _ {n} , b _ {n}\) で表せ.
(2) 不等式 \(a _ {n} x +b _ {n} y \gt 1\) が定める領域を \(D _ n\) とする. \(D _ 0 , D _ 1 , D _ 2 , \cdots\) すべてに含まれるような点の範囲を図示せよ.
続きを読む