\(xy\) 平面上の曲線 \(y = x^3\) を \(C\) とする. \(C\) 上の \(2\) 点 A \(( -1 , -1 )\) , B \(( 1 , 1 )\) をとる. さらに, \(C\) 上で原点 O と B の間に動点 P \(( t , t^3 ) \ ( 0 \lt t \lt 1 )\) をとる. このとき, 以下の問に答えよ.
(1) 直線 AP と \(x\) 軸のなす角を \(\alpha\) とし, 直線 PB と \(x\) 軸のなす角を \(\beta\) とするとき, \(\tan \alpha , \tan \beta\) を \(t\) を用いて表せ. ただし, \(0 \lt \alpha \lt \dfrac{\pi}{2}\) , \(0 \lt \beta \lt \dfrac{\pi}{2}\) とする.
(2) \(\tan \angle \text{APB}\) を \(t\) を用いて表せ.
(3) \(\angle \text{APB}\) を最小にする \(t\) の値を求めよ.
続きを読む