東北大理系2007:第3問


自然数 \(n\) に対し, 方程式 \[ \dfrac{1}{x^n} -\log x -\dfrac{1}{e} = 0 \] を考える. ただし. 対数は自然対数であり, \(e\) はその底とする.

  1. (1) 上の方程式は \(x \geqq 1\) にただ一つの解をもつことを示せ.

  2. (2) (1) の解を \(x _ n\) とする. このとき \(\displaystyle\lim _ {n \rightarrow \infty} x _ n = 1\) を示せ.


続きを読む

東北大理系2007:第4問


\(xy\) 平面上に \(4\) 点 \((0,0) , (4,0) , (4,4) , (0,4)\) を頂点とする正方形 \(K\) を考える. 点 \((1,2)\) を通る各直線に対して, その \(K\) に含まれる部分を \(l\) とおく.

  1. (1) \(l\) の長さの最大値と, それを与える直線の方程式を求めよ.

  2. (2) \(l\) の長さの最小値を求めよ.

tohoku_r_2007_04_01
続きを読む

東北大理系2007:第6問


\(a \gt 0\) に対し \[\begin{align} I _ 0 (a) & = \displaystyle\int _ {0}^a \sqrt{1+x} \, dx , \\ I _ n (a) & = \displaystyle\int _ {0}^a x^n \sqrt{1+x} \, dx \quad ( n = 1, 2, \cdots ) \end{align}\] とおく.

  1. (1) \(\displaystyle\lim _ {a \rightarrow \infty} a^{-\frac{3}{2}} I _ 0 (a)\) を求めよ.

  2. (2) 漸化式 \[ I _ n (a) = \dfrac{2}{3+2n} a^n (1+a)^{\frac{3}{2}} -\dfrac{2n}{3+2n} I _ {n-1} (a) \quad ( n = 1, 2, \cdots ) \] を示せ.

  3. (3) 自然数 \(n\) に対して, \(\displaystyle\lim _ {a \rightarrow \infty} a^{- \left( \frac{3}{2} +n \right)} I _ n (a)\) を求めよ.


続きを読む

医科歯科大2007:第1問


以下の各問いに答えよ.

  1. (1) 底面の半径が \(r\) , 高さが \(h\) の直円錐の側面積を \(r\) と \(h\) を用いて表せ.

  2. (2) 座標平面上の \(4\) 点 A \(\left( \dfrac{\sqrt{3}}{3} , 1 \right)\) , B \(\left( \dfrac{\sqrt{3}}{2} , \dfrac{3}{2} \right)\) , E \(\left( 0 , \dfrac{3}{2} \right)\) , F \(( 0 , 1 )\) を考える. 四角形 ABEF を \(y\) 軸のまわりに \(1\) 回転してできる回転体の表面積を求めよ.

  3. (3) 座標平面上の曲線 \[ C : \ x^2+y^2 = 3 \quad ( 0 \lt x \lt \sqrt{2} , \ 1 \lt y \lt \sqrt{3} ) \] の上の点 Q を考える. 点 Q と同じ \(y\) 座標を持つ \(y\) 軸上の点を H とし, 原点 O と点 Q を結ぶ線分 OQ が直線 \(y = 1\) と交わる点を P とする. さらに点 F \(( 0 , 1 )\) をとる. 四角形 PQHF を \(y\) 軸のまわりに \(1\) 回転してできる回転体の面のうち, 線分 PQ が \(1\) 回転してできる面の表面積を \(S\) とする. 点 Q が曲線 \(C\) 上を動くとき \(S\) の最大値を求めよ.


続きを読む

医科歯科大2007:第2問


座標平面上の動点 Q が以下の規則 (a) ~ (f) に従って \(1\) 秒ごとに移動する.

  1. (a) 原点 \((0,0)\) を出発点とし, まず点 \((1,0)\) または点 \((0,1)\) または点 \((0,-1)\) に, それぞれ確率 \(\dfrac{1}{3}\) で移動する.

  2. (b) ある時刻に点 \(( x-1 , y )\) から点 \(( x , y )\) に移動したならば, その \(1\) 秒後には点 \(( x+1 , y )\) または点 \(( x , y+1 )\) または点 \(( x , y-1 )\) に, それぞれ確率 \(\dfrac{1}{3}\) で移動する.

  3. (c) ある時刻に点 \(( x , 0 )\) から点 \(( x , 1 )\) に移動したならば, その \(1\) 秒後には点 \(( x , 2 )\) または点 \(( x+1 , y )\) に, それぞれ確率 \(\dfrac{1}{2}\) で移動する.

  4. (d) ある時刻に点 \(( x , 0 )\) から点 \(( x , -1 )\) に移動したならば, その \(1\) 秒後には点 \(( x , -2 )\) または点 \(( x+1 , -1 )\) に, それぞれ確率 \(\dfrac{1}{2}\) で移動する.

  5. (e) ある時刻に点 \(( x , 1 )\) または点 \(( x , -1 )\) から点 \(( x , 0 )\) に移動したならば, その \(1\) 秒後には点 \(( x+1 , 0 )\) に移動する.

  6. (f) 直線 \(y = 2\) 上の点または直線 \(y = -2\) 上の点に達した場合には停止する.

このとき以下の各問いに答えよ.

  1. (1) \(n\) を正の整数とするとき, Q がある時刻に点 \(( n-1 , 0 )\) に位置し, かつその \(1\) 秒後に点 \(( n , 0 )\) に移動している確率を \(p _ n\) とする. また Q がある時刻に点 \(( n-1 , 1 )\) に位置し, かつその \(1\) 秒後に点 \(( n , 1 )\) に移動している確率を \(p' _ n\) とする. \(p _ 1 , p _ 2 , p' _ 1 , p' _ 2\) をそれぞれ求めよ.

  2. (2) Q が直線 \(x=2\) 上の点に達する確率, および直線 \(x=3\) 上の点に達する確率をそれぞれ求めよ.

  3. (3) \(m\) を正の整数とするとき, Q が \(( m , 0 )\) に達する確率を \(m\) で表せ.


続きを読む

医科歯科大2007:第3問


\(ad -bc = 1 , \ a \gt 0\) を満たす整数 \(a , b , c , d\) を考える. 行列 \[\begin{align} A & = \left( \begin{array}{cc} 6 & 10 \\ 10 & 17 \end{array} \right) , \quad B = \left( \begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right) , \\ M & = \left( \begin{array}{cc} a & b \\ c & d \end{array} \right) , \quad N = \left( \begin{array}{cc} a & c \\ b & d \end{array} \right) \ . \end{align}\] が \(NA = BM^{-1}\) を満たすとき, 以下の各問いに答えよ. ただし, \(M^{-1}\) は \(M\) の逆行列を表す.

  1. (1) \(6a^2+20ac+17c^2\) の値を求めよ.

  2. (2) \(2a^2+b^2\) の値を求めよ.

  3. (3) \(a , b , c , d\) の値を求めよ.

  4. (4) \(6x^2+20xy+17y^2 = 59\) を満たす実数 \(x , y\) に対して \[ \left\{ \begin{array}{l} X = dx-by \\ Y = -cx+ay \end{array} \right. \ . \] とおくとき, \(X^2+2Y^2\) の値を求めよ.

  5. (5) \(6x^2+20xy+17y^2 = 59\) を満たす整数の組 \((x,y)\) をすべて求めよ.


続きを読む

阪大理系2007:第1問


\(n\) を自然数とする. 関数 \(y = \sqrt{x}\) のグラフを \(C\) とし, \(C\) 上の \(2\) 点 \(( n , \sqrt{n})\) と \(( n+1 , \sqrt{n+1})\) を通る直線を \(l\) とする. \(C\) と \(l\) で囲まれた部分を \(x\) 軸のまわりに \(1\) 回転させてできる立体の体積を \(V\) とする. このとき \(\displaystyle\lim _ {n \rightarrow \infty} n^a V = b\) を満たす正の数 \(a , b\) を求めよ.


続きを読む