\(z\) を複素数とする. 複素数平面上の \(3\) 点 O \(( 0 )\) , A \(( z )\) , B \(( z^2 )\) について, 以下の問いに答えよ.
(1) \(3\) 点 O, A, B が同一直線上にあるための \(z\) の必要十分条件を求めよ.
(2) \(3\) 点 O, A, B が二等辺三角形の頂点になるような \(z\) 全体を複素数平面上に図示せよ.
(3) \(3\) 点 O, A, B が二等辺三角形の頂点であり, かつ \(z\) の偏角 \(\theta\) が \(0 \leqq \theta \leqq \dfrac{\pi}{3}\) を満たすとき, 三角形 OAB の面積の最大値とそのときの \(z\) の値を求めよ.
続きを読む