原点を O とする \(xy\) 平面上に, 放物線 \(C\) : \(y = 1-x^2\) がある. \(C\) 上に \(2\) 点 P \(( p , 1-p^2 )\) , Q \(( q , 1-q^2 )\) を \(p \lt q\) となるようにとる.
(1) \(2\) つの線分 OP , OQ と放物線 \(C\) で囲まれた部分の面積 \(S\) を, \(p\) と \(q\) の式で表せ.
(2) \(q = p+1\) であるとき \(S\) の最小値を求めよ.
(3) \(pq = -1\) であるとき \(S\) の最小値を求めよ.
続きを読む