正の整数に関する条件
- (*) \(10\) 進法で表したときに, どの位にも数字 \(9\) が現れない.
を考える. 以下の問いに答えよ.
(1) \(k\) を正の整数とするとき, \(10^{k-1}\) 以上かつ \(10^k\) 未満であって条件 (*) を満たす正の整数の個数を \(a_k\) とする. このとき, \(a_k\) を \(k\) の式で表せ.
(2) 正の整数 \(n\) に対して, \[ b_n = \left\{ \begin{array}{ll} \dfrac{1}{n} & ( \ n \ \text{が条件 (*) を満たすとき} \ ) \\ 0 & ( \ n \ \text{が条件 (*) を満たさないとき} \ ) \end{array} \right. \] とおく. このとき, すべての正の整数 \(k\) に対して次の不等式が成り立つことを示せ. \[ \textstyle\sum\limits _ {n=1}^{10^k -1} b_n \lt 80 \]
続きを読む