\(0 \leqq a \lt 1\) を満たす実数 \(a\) に対し, 数列 \(\{ a_n \}\) を \[ a_1 = a , \qquad a _ {n+1} = 3 \left[ a_n +\dfrac{1}{2} \right] -2 a_n \quad ( n = 1, 2, 3, \cdots ) \] という漸化式で定める. ただし \([x]\) は \(x\) 以下の最大の整数を表す. 以下の問に答えよ.
(1) \(a\) が \(0 \leqq a \lt 1\) の範囲を動くとき, 点 \(( x , y ) = ( a_1 , a_2 )\) の軌跡を \(xy\) 平面上に図示せよ.
(2) \(a_n -[ a_n ] \geqq \dfrac{1}{2}\) ならば, \(a_n \lt a _ {n+1}\) であることを示せ.
(3) \(a_n \gt a _ {n+1}\) ならば, \(a _ {n+1} = 3 [ a_n ] -2 a_n\) かつ \([ a _ {n+1} ] = [ a_n ] -1\) であることを示せ.
(4) ある \(2\) 以上の自然数 \(k\) に対して, \(a_1 \gt a_2 \gt \cdots \gt a_k\) が成り立つとする. このとき \(a_k\) を \(a\) の式で表せ.
続きを読む