名古屋大理系2016:第3問


玉が \(2\) 個ずつ入った \(2\) つの袋 A , B があるとき, 袋 B から玉を \(1\) 個取り出して袋 A に入れ, 次に袋 A から玉を \(1\) 個取り出して袋 B に入れる, という操作を \(1\) 回の操作と数えることにする. A に赤玉が \(2\) 個, B に白玉が \(2\) 個入った状態から始め, この操作を \(n\) 回繰り返した後に袋 B に入っている赤玉の個数が \(k\) 個である確率を \(P _ n (k) \ ( n = 1, 2, 3, \cdots )\) とする. このとき, 次の問に答えよ.

  1. (1) \(k = 0, 1, 2\) に対する \(P _ 1 (k)\) を求めよ.

  2. (2) \(k = 0, 1, 2\) に対する \(P _ n (k)\) を求めよ.


続きを読む

名古屋大理系2016:第4問


次の問に答えよ. ただし \(2\) 次方程式の重解は \(2\) つと数える.

  1. (1) 次の条件 (*) を満たす整数 \(a , b , c , d , e , f\) の組をすべて求めよ. \[ \text{(*)} \ \left\{ \begin{array}{l} 2 \text{ 次方程式 } x^2 +ax +b = 0 \text{ の } 2 \text{ つの解が } c , d \text{ である. } \\ 2 \text{ 次方程式 } x^2 +cx +d = 0 \text{ の } 2 \text{ つの解が } e , f \text{ である. } \\ 2 \text{ 次方程式 } x^2 +ex +f = 0 \text{ の } 2 \text{ つの解が } a , b \text{ である. } \end{array} \right. \]

  2. (2) \(2\) つの数列 \(\{ a _ n \} , \{ b _ n \}\) は, 次の条件 (**) を満たすとする.

    1. (**) すべての正の整数 \(n\) について, \(a _ n , b _ n\) は整数であり, \(2\) 次方程式 \(x^2 +a _ n x +b _ n = 0\) の \(2\) つの解が \(a _ {n+1} , b _ {n+1}\) である.

 このとき

  1. (i) 正の整数 \(m\) で, \(| b _ m | = | b _ {m+1} | = | b _ {m+2} | = \cdots\) となるものが存在することを示せ.

  2. (ii) 条件 (**) を満たす数列 \(\{ a _ n \} , \{ b _ n \}\) の組をすべて求めよ.


続きを読む

大学別一覧


東大理系
2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007

京大理系
2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007

東工大
2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007

阪大理系
2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007

名古屋大理系
2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007

医科歯科大
2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007

東北大理系
2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007

横国大理系
2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007

筑波大理系
2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007

早稲田理工
2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007

東大文系
2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007

一橋大
2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007

阪大理系2016:第1問


\(1\) 以上 \(6\) 以下の \(2\) つの整数 \(a , b\) に対し, 関数 \(f _ n (x) = \ ( n = 1, 2, 3, \cdots )\) を次の条件 (ア), (イ), (ウ) で定める. \[ \begin{array}{lll} \text{(ア)} & f _ 1 (x) = \sin ( \pi x ) & \\ \text{(イ)} & f _ {2n} (x) = f _ {2n-1} \left( \dfrac{1}{a} +\dfrac{1}{b} -x \right) & ( n = 1, 2, 3, \cdots ) \\ \text{(ウ)} & f _ {2n+1} (x) = f _ {2n} ( -x ) & ( n = 1, 2, 3, \cdots ) \end{array} \] 以下の問いに答えよ.

  1. (1) \(a = 2\) , \(b = 3\) のとき, \(f _ 5 (0)\) を求めよ.

  2. (2) \(a = 2\) , \(b = 3\) のとき, \(\textstyle\sum\limits _ {k=1}^{100} (-1)^k f _ {2k} (0)\) を求めよ.

  3. (3) \(1\) 個のさいころを \(2\) 回投げて, \(1\) 回目に出る目を \(a\) , \(2\) 回目に出る目を \(b\) とするとき, \(f _ 6 (0) = 0\) となる確率を求めよ.


続きを読む

阪大理系2016:第2問


次の問いに答えよ.

  1. (1) \(c\) を正の定数とする. 正の実数 \(x , y\) が \(x+y = c\) をみたすとき, \[ \left( 1 +\dfrac{1}{x} \right) \left( 1 +\dfrac{1}{y} \right) \] の最小値を \(c\) を用いて表せ.

  2. (2) 正の実数 \(x , y , z\) が \(x+y+z = 1\) をみたすとき, \[ \left( 1 +\dfrac{1}{x} \right) \left( 1 +\dfrac{1}{y} \right) \left( 1 -\dfrac{4}{3z} \right) \] の最大値を求めよ.


続きを読む

阪大理系2016:第3問


座標平面において, 原点 O を中心とする半径 \(r\) の円と放物線 \(y = \sqrt{2} (x-1)^2\) は, ただ \(1\) つの共有点 \(( a , b )\) をもつとする.

  1. (1) \(a , b , r\) の値をそれぞれ求めよ.

  2. (2) 連立不等式 \[ a \leqq x \leqq 1 , \quad 0 \leqq y \leqq \sqrt{2} (x-1)^2 , \quad x^2 +y^2 \geqq r^2 \] の表す領域を, \(x\) 軸のまわりに \(1\) 回転してできる回転体の体積を求めよ.


続きを読む

阪大理系2016:第4問


正の整数 \(n\) に対して \[ S _ n = \textstyle\sum\limits _ {k=1}^{n} \dfrac{1}{k} \] とおき, \(1\) 以上 \(n\) 以下のすべての奇数の積を \(A _ n\) とする.

  1. (1) \(\log _ 2 n\) 以下の最大の整数を \(N\) とするとき, \(2^N A _ n S _ n\) は奇数の整数であることを示せ.

  2. (2) \(S _ n = 2 +\dfrac{m}{20}\) となる正の整数の組 \(( n , m )\) をすべて求めよ.

  3. (3) 整数 \(a\) と \(0 \leqq b \lt 1\) をみたす実数 \(b\) を用いて, \[ A _ {20} S _ {20} = a+b \] と表すとき, \(b\) の値を求めよ.


続きを読む